The Derivative as a Function

Section 2.9
The Derivative as a Function

Instead of calculating f' at $x = a$, we can leave the variable as x —

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$f'(x)$ is called the derivative of f.

Note that it is a function of x, too.

• If $y = f(x)$, we have alternative notation:

$$f'(x) = y' = \frac{dy}{dx} = \frac{d}{dx} f(x)$$

You will need to recognize these other ways to write the derivative.
Differentiability Implies Continuity

Theorem: If \(f \) is differentiable at \(a \), then \(f \) must be continuous at \(a \).

Proof: Assume \(f'(a) \) is finite.

Then \(\lim_{x \to a} \left[f(x) - f(a) \right] = \lim_{x \to a} \frac{f(x) - f(a)}{(x-a)} \)

\[= \left[\lim_{x \to a} \frac{f(x) - f(a)}{x-a} \right] \left[\lim_{x \to a} (x-a) \right] \]

\[= [f'(a)] [0] = 0 \]

Notice that \(\lim_{x \to a} [f(x) - f(a)] = 0 \) is the same as \(\lim_{x \to a} f(x) = f(a) \), so \(f \) must be continuous at \(a \).

- We say “differentiability implies continuity.”
Pictures

\((a \neq a)\)

\[\begin{align*}
\text{not continuous} & \quad \text{not differentiable} \\
\text{continuous but} & \quad \text{continuous but} \\
\text{not differentiable} & \quad \text{not differentiable} \\
\text{continuous but} & \quad \text{continuous and} \\
\text{not differentiable} & \quad \text{differentiable}
\end{align*}\]

- \(f'(a)\) exists means there is a (single-valued) finite slope at \(a\).
Relating Graphs of f and f'

- Suppose we are given the graph of f, and are asked to sketch the graph of f':

 For $x < A$ or $x > B$, f decreases if slope is < 0, i.e. $f' < 0$

 At A or B slope is 0, i.e. $f' = 0$

 For $A < x < B$, f increases if slope is > 0, i.e. $f' > 0$