The Substitution Rule

Section 5.5
Example 1 – Substitution in Indefinite Integrals

\[\int x\sqrt{x^2+1} \, dx = \int \frac{1}{2} \sqrt{u} \, du \]

\[u = x^2 + 1 \]
\[du = 2x \, dx \]

(since \(x \, dx = \frac{du}{2} \))

\[= \frac{1}{2} \cdot \frac{2}{3} u^{3/2} + C \]

\[= \frac{1}{3} (x^2 + 1)^{3/2} + C \]

> Idea: replace \(\sqrt{x^2+1} \) by the simpler expression \(\sqrt{u} \).

> Rewrite \(\int \) in terms of \(u \) & \(du \).

> Answer in terms of original variable.

Check the answer by differentiating.
Example 2 – Substitution in Indefinite Integrals

\[
\int \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx = \int 2e^u \, du
\]

\[u = \sqrt{x}\]
\[du = \frac{1}{2\sqrt{x}} \, dx\]

\[
(\text{so } \frac{dx}{\sqrt{x}} = 2 \, du)
\]

\[= 2e^u + C\]
\[= 2e^{\sqrt{x}} + C\]

Idea: replace \(e^{\sqrt{x}}\) by the simpler expression \(e^u\).

Check answer by differentiating.
Useful Comments on Substitution

- You want to choose a substitution $u = \ ?$ so that the entire integral can be rewritten in terms of u and du.

- You want the u-integral to be easier than the original integral, so $u = x$ never results in easier \int.

- Answer in terms of the original variable.
Examples 3 & 4 – Substitution in Indefinite Integrals

• \[\int \frac{\sin x}{1+\cos^2 x} \, dx = \int -\frac{1}{1+u^2} \, du = -\tan^{-1} u + C \]

 \[u = \cos x \]

 \[du = -\sin x \, dx \]

• \[\int \frac{dx}{x \ln x} = \int \frac{du}{u} = \ln |u| + C \]

 \[u = \ln x \]

 \[du = \frac{dy}{x} \]
Example 1 – Substitution in Definite Integrals

\[\int_{0}^{5} \frac{dx}{\sqrt{3x+1}} = \int_{0}^{2} \frac{1}{3} u^{-1/2} \, du \]

\[u = 3x + 1 \]
\[du = 3 \, dx \]

\[\text{or originally } x \text{ went from 0 to 5} \]
\[\text{new limits must give } u \text{-range} \]
\[\text{when } x = 0, \ u = 3(0)+1 = 1 \]
\[\text{when } x = 5, \ u = 3(5)+1 = 16 \]

\[= \int_{1}^{16} \frac{1}{3} u^{-1/2} \, du \]
\[= \left[\frac{1}{3} \cdot 2 u^{1/2} \right]_{1}^{16} \]
\[= \frac{2}{3} (16) - \frac{2}{3} (1) = 2 \]
Example 2 – Substitution in Definite Integrals

\[
\int_{0}^{\sqrt{\pi}} x \cos(x^2) \, dx = \int_{0}^{\pi} \frac{1}{2} \cos u \, du
\]

\[u = x^2\]
\[du = 2x \, dx\]

when \(x = 0, \ u = 0 \)

\(x = \sqrt{\pi}, \ u = \pi \)

\[= \left[\frac{1}{2} \sin u \right]^{\pi}_{0}\]

\[= \frac{1}{2} (0) - \frac{1}{2} (0) = 0\]
Example 3 – Substitution in Definite Integrals

\[\int_{1}^{2} x \sqrt{x-1} \, dx \]

Let \(u = x - 1 \), so \(x = u + 1 \)

\[du = dx \]

When \(x = 1 \), \(u = 0 \)

When \(x = 2 \), \(u = 1 \)

\[= \int_{0}^{1} (u + 1) \sqrt{u} \, du \]

\[= \int_{0}^{1} (u^{3/2} + u^{1/2}) \, du \]

\[= \left[\frac{2}{5} u^{5/2} + \frac{2}{3} u^{3/2} \right]_{0}^{1} \]

\[= \left(\frac{2}{5} + \frac{2}{3} \right) - 0 = \frac{16}{15} \]