Area of Surface of Revolution

If we revolve a line segment about an axis (see picture), we obtain a frustrum of a cone.

Its surface area is

\[2\pi \text{ average length of segment} \]

We want the surface area \(S \) obtained when we revolve a smooth curve about an axis —

We must be expressed in terms of the variable used for \(ds \).
Example – Surface Area

Completely set up integrals for the surface area obtained by revolving \(y = \sqrt{x} \) for \(1 \leq x \leq 4 \) about (a) the \(x \)-axis, and (b) the \(y \)-axis

(a) \[
\int ds = 2\pi \int ds = 2\pi \int \sqrt{1 + \left[f'(x) \right]^2} \, dx
\]

where \(f(x) = \sqrt{x} \) \(\Rightarrow \) \(f'(x) = \frac{1}{2\sqrt{x}} \)

\[
ds = \sqrt{1 + \frac{1}{4x}} \, dx
\]

\(\text{Our variable is } x \)

\(\pi = y \) \text{ (from diagram)} – in terms of \(dx \) : \(\pi = \sqrt{x} \)

\[
\int ds = 2\pi \sqrt{x} \sqrt{1 + \frac{1}{4x}} \, dx = 2\pi \sqrt{x + \frac{1}{4}} \, dx
\]

Answer: \(S_{\text{surf. area}} = 2\pi \int_{1}^{4} \sqrt{x + \frac{1}{4}} \, dx \)

(b) \[
\int ds = 2\pi \int_{1}^{4} x \sqrt{1 + \frac{1}{4x}} \, dx
\]
Comments

• A picture of your curve is not necessary – but diagrams similar to those in the previous e.g. help with r.

• r must be expressed in terms of the variable chosen for ds.

• Remember to simplify ds and dS before trying to integrate.